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ABSTRACT

We describe a new program for determining photometric redshifts, dubbed EAZY. The program is
optimized for cases where spectroscopic redshifts are not available, or only available for a biased subset
of the galaxies. The code combines features from various existing codes: it can fit linear combinations
of templates, it includes optional flux- and redshift-based priors, and its user interface is modeled on
the popular HYPERZ code. A novel feature is that the default template set, as well as the default
functional forms of the priors, are not based on (usually highly biased) spectroscopic samples, but on
semi-analytical models. Furthermore, template mismatch is addressed by a novel rest-frame template
error function. This function gives different wavelength regions different weights, and ensures that
the formal redshift uncertainties are realistic. We introduce a redshift quality parameter, Qz, that
provides a robust estimate of the reliability of the photometric redshift estimate. Despite the fact
that EAZY is not ”trained” on spectroscopic samples, the code (with default parameters) performs
very well on existing public datasets. For K-selected samples in CDF-South and other deep fields we
find a 1σ scatter in ∆z/(1+ z) of 0.034, and we provide updated photometric redshift catalogs for the
FIRES, MUSYC, and FIREWORKS surveys.
Subject headings: cosmology: observations — galaxies: evolution — galaxies: formation

1. INTRODUCTION

Accurate redshifts of distant galaxies are crucial for
nearly all of observational cosmology. Whereas exten-
sive spectroscopy with multi-object spectrographs on
8-10m class telescopes has yielded redshifts for thou-
sands, and in some cases tens of thousands, of galaxies
(e.g. Steidel et al. 2003; Davis et al. 2003; Le Fèvre et al.
2005), these galaxies tend to be relatively bright at op-
tical wavelengths. For galaxies fainter than R ∼ 25 we
rely almost exclusively on photometric redshifts, derived
from fitting template spectra to broad- or medium-band
photometry (e.g. Lanzetta et al. 1996; Wolf et al. 2003;
Franx et al. 2003; Mobasher et al. 2004; Drory et al.
2005). This situation is not likely to change, even
with the advent of efficient spectrographs with very
wide fields (such as WFMOS; Bassett et al. 2005), multi-
object capabilities in the near-infrared (e.g. MOIRCS;
Ichikawa et al. 2006), or larger telescopes. The signal-
to-noise ratio (S/N) per resolution element in the contin-
uum decreases with spectral resolution as S/N ∝ R−0.5

for a given exposure time. Therefore, the required in-
tegration time to maintain a given S/N per resolution
element increases linearly with the spectral resolution,
quite independent of the details of the telescope and in-
struments. As a typical set of broad band filters corre-
sponds to R ∼ 5 and typical faint object spectrographs
have R ∼ 1000, spectroscopy is about two orders of mag-
nitude more time consuming than photometry for a given
telescope size. A notable exception is spectroscopy of
emission line objects, which can be extremely efficient at
faint magnitudes.

The methodology for determining photometric red-
shifts using the template-fitting approach is essentially
straightforward: the photometric data are compared to
synthetic photometry for a large range of template spec-

1 Department of Astronomy, Yale University, New Haven, CT
06520-8101

tra and redshifts, and the most likely redshift follows
from a statistical analysis of the differences between
observed and synthetic data. Several codes exist that
perform this task, each employing its own techniques
for creating the synthetic photometry and interpreting
the residuals in the redshift – template plane. Popu-
lar examples include HYPERZ (Bolzonella et al. 2000),
ImpZ (Babbedge et al. 2004), and Le PHARE2 (Arnouts
& Ilbert), which do a straightforward χ2 minimization;
GREGZ3 (Rudnick et al. 2001, 2003), which allows lin-
ear combinations of templates and uses Monte Carlo
methods to determine the redshift uncertainties; BPZ
(Beńıtez 2000), which uses Bayesian statistics allowing
the use of priors; and ZEBRA (Feldmann et al. 2006)
and kcorrect (Blanton & Roweis 2007, hereafter BR07),
which include (distinct) iterative template-optimization
routines that make use of the extensive spectroscopic
databases of the zCOSMOS (Lilly et al. 2007) and Sloane
Digital Sky Survey (SDSS; York et al. 2000) projects,
respectively.

For obvious reasons photometric redshifts benefit from
having high quality photometry in many bandpasses and
from sampling strong continuum features in the observed
wavelength region (such as a Lyman or Balmer break),
irrespective of the methodology. However, given a set of
objects with good quality photometry, the aspect that
is of paramount importance for obtaining reliable photo-
metric redshifts is the selection of the template set (see
Feldmann et al. 2006, §2.2). Feldmann et al. (2006) ob-
tain very good results by iteratively adapting the tem-
plates, minimizing the systematic differences between the
best fitting templates and the actual galaxy photome-
try. This approach not only reduces the random uncer-
tainty in the photometric redshifts but can also elim-

2 http://www.oamp.fr/people/arnouts/LE PHARE.html
3 Greg Rudnick did not name his code; the name GREGZ is

used for convenience in the present paper.
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inate systematic effects in certain redshift ranges (see
Feldmann et al. 2006). The disadvantage of this opti-
mization is that its effects can only be assessed when a
large sample of galaxies with spectroscopic redshifts is
available, and when this sample is a random subset of
the entire photometric sample. This assumption may be
valid in the case of zCOSMOS, but this is generally not
the case in studies of galaxy samples which are signifi-
cantly fainter than the spectroscopic limit.

In this paper we describe a new photometric redshift
code which was written specifically for samples with in-
complete and/or biased spectroscopic information (such
as, for example, faint K-selected samples). Rather than
minimizing the scatter in the relation between photo-
metric and spectroscopic redshift using the spectroscopic
sample as a training set, a user-defined template er-
ror function is introduced to account for wavelength-
dependent template mismatch. The code combines fea-
tures from various existing programs: the possibility
of fitting linear combinations of templates (as done in
GREGZ), the use of priors (as first done in BPZ), and
a user-friendly interface based on HYPERZ. The default
template set and the redshift-magnitude priors are de-
rived from semi-analytical models. These models are,
of course, only an approximation of reality, but their
“perfect” completeness down to very faint magnitudes
outweighs their imperfect representation of the real Uni-
verse.

The outline of this paper is as follows. In §2 we de-
scribe the implementation of the code, including the op-
timized template set and redshift priors derived from
semi-analytical models and the template error function
derived from the GOODS-CDFS photometric catalog. In
§3 we test the code on a combined photometric catalog
from a variety of deep multi-wavelength surveys and com-
pare the photometric redshifts to spectroscopic redshifts
of nearly 2000 galaxies at 0 < z < 4. In §4 we discuss
the reliability of the photometric redshift estimates and
provide cautionary examples for relying solely on spec-
troscopic samples to estimate the photometric redshift
quality. Finally, in §5 we summarize the features and
performance of the photometric redshift code and dis-
cuss future avenues for improvement.

2. IMPLEMENTATION

2.1. Basic Algorithm

The basic algorithm is similar to many existing pho-
tometric redshift codes. The algorithm steps through a
user-defined grid of redshifts, and at each redshift finds
the best fitting synthetic template spectrum by minimiz-
ing

χ2
z,i =

Nfilt
∑

j=1

(Tz,i,j − Fj)
2

(δFj)
2 , (1)

with Nfilt the number of filters, Tz,i,j the synthetic flux of
template i in filter j for redshift z, Fj the observed flux
in filter j, and δFj the uncertainty in Fj . Templates are
corrected for absorption by intervening H I clouds fol-
lowing the Madau (1995) prescription. The template fit
is done in linear space, as this allows a proper treatment
of flux errors and of negative flux measurements.

Fig. 1.— Distribution of K magnitudes of 104 galaxies from
our simulated lightcone catalog. The K-band number counts of
the two deep fields from the FIRES survey (Labbé et al. 2003;
Förster Schreiber et al. 2006) are shown for comparison, scaled by
the ratio of the number of galaxies with Ks < 23.5 in these fields
compared to the lightcone catalog.inset: Redshift distribution of
the galaxies in the lightcone catalog. The widths of the shaded
FIRES distributions and the error bars on the histograms are the
poisson-like errors for small numbers calculated following Gehrels
(1986). The simulated number counts are generally consistent with
the observed values to within a factor of ∼2. The simulated cat-
alog provides a unique template calibration set that is complete
at the limiting magnitudes characteristic of deep imaging surveys,
and that includes thousands of galaxies at z > 2 where observed
spectroscopic samples are sparse.

In most photometric redshift codes (e.g. HY-
PERZ, BPZ, ZEBRA) each template Ti is a single-
component empirical or synthetic spectral energy distri-
bution (SED). However, in practice many galaxies are
not well represented by any individual template from the
user-supplied library, and as a result template mismatch
is the primary source of error in photometric redshift
estimates. In ZEBRA, the detailed form of each tem-
plate is adapted iteratively based on residuals from fits
to galaxies with spectroscopic redshifts. Instead, we fol-
low GREGZ and allow linear combinations of templates.
Rather than finding the best-fitting template Ti the code
finds the best-fitting coefficients, αi, in

Tz =

Ntemp
∑

i=1

αiTz,i, (2)

with all αi ≥ 0. The number of template components
fit simultaneously is one, two, or all of the templates in
a user-defined list. For the one- and two-template fits
the coefficients, αi, are determined using analytic least-
squares fits, while for the latter option the coefficients for
every template in the library are determined iteratively
following the algorithm of Sha et al. (2007). In practice,
the choice between a 2-template fit and an N -template
fit is a trade-off between accuracy and computation time.
The improvement going from two templates to N tem-
plates can be significant if the number of templates in
the library is small (. 5), but is usually negligible when
the number of templates is large (& 10).

2.2. Optimized template set
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Fig. 2.— left: Five templates generated following the Blanton & Roweis (2007) algorithm with PÉGASE models and a calibration
set of synthetic photometry derived from semi-analytic models. Shown in grey is the additional young and dusty template added to
compensate for the lack of extremely dusty galaxies in the SAMs. All of the templates are shown normalized at 6000Å. middle: “Default”
template set of Blanton & Roweis (2007). right: Empirical templates from Coleman et al. (1980) plus the “SB1” starburst spectrum from
Kinney et al. (1996) that are frequently used for photometric redshifts. The templates shown are extended into the NUV and NIR with
Bruzual & Charlot (2003) models (dashed regions; see, e.g. Rudnick et al. 2001).

The recent significant improvement in the quality of
maximum-likelihood photometric redshift estimates has
come largely from optimizing the template set that is
fit to the broad-band photometry. In practice, the tem-
plate set needs to be large enough that it spans the broad
range of multi-band galaxy colors and small enough that
the color and redshift degeneracies are kept to a mini-
mum (e.g. Beńıtez 2000, ). The combined set of em-
pirical galaxy templates from Coleman et al. (1980) and
Kinney et al. (1996) (hereafter, CK) is the most fre-
quently used set for photometric redshift measurements
(BPZ; ZEBRA; Ilbert et al. 2006; Mobasher et al. 2007),
and it provides the additional benefit of allowing a rough
estimate of an individual galaxy’s spectral type as well
as its redshift. The CK set suffers from a number of dis-
advantages, however: it is determined from local galax-
ies and is therefore not guaranteed (or expected) to be
representative of galaxies at high redshift, and the tem-
plates need to be extended into the UV and NIR for
use with photometry from modern multi-wavelength sur-
veys. Several of the recent photometric redshift efforts
address the first issue by iteratively adjusting the basis
CK templates based on fits to large broad-band photo-
metric datasets (ZEBRA; Ilbert et al. 2006; Assef et al.
2008). While this technique is shown to significantly im-
prove the quality of the redshift estimates, it requires
a large spectroscopic redshift calibration sample and re-
mains largely unproven at z & 1.5.

We derive a new minimal template set based purely on
stellar population synthesis models that is designed for
deep optical-NIR broad-band surveys and that requires
no optimization based on spectroscopic samples. The
template set is calculated following the novel “nonneg-
ative matrix factorization” (NMF) algorithm of BR07,
which essentially takes a large number, Nin, of synthetic
models and computes a reduced set of Nout basis tem-
plates that best reproduce a supplied broad-band pho-
tometric calibration catalog. The Nout basis templates
are non-negative linear combinations of the Nin models
and can be considered to be the “principal-component”
spectral templates of the calibration catalog. For ex-
ample, BR07 compute Nout = 5 basis templates from a
list of Nin = 485 Bruzual & Charlot (2003) models that

efficiently reproduce a large sample of photometric ob-
servations from the SDSS.

While the SDSS offers precision photometric and spec-
troscopic information for a spectacular number of galax-
ies, it is limited to the nearby universe – which means
that templates determined from (or optimized by) SDSS
observations are subject to similar uncertainties when ex-
tended to higher redshifts as those of the CK templates
described above. Flux-limited spectroscopic samples are
now available up to R ≈ 24.5 (e.g. DEEP2, Davis et al.
(2003); VVDS, Le Fèvre et al. (2005)), but deep imag-
ing surveys reach well beyond the limits of these spec-
troscopic surveys. In order to obtain a calibration sam-
ple that extends to faint magnitudes and high redshifts,
we turn to theoretical models of galaxy formation and
evolution that are complete to the extent that they
reproduce observed galaxy properties at high redshift.
Specifically, we obtain synthetic UBVRIzJHK “photom-
etry” of galaxies in a 1 deg2 lightcone (Blaizot et al.
2005) created from galaxies in the semi-analytic model
(SAM) of De Lucia & Blaizot (2007), which is based on
the Millennium Simulation (Springel et al. 2005). Syn-
thetic spectral energy distributions (SEDs) are generated
from Bruzual & Charlot (2003) models following the
non-trivial star formation histories of the galaxies in the
semi-analytic model. While the models do not exactly
reproduce the relative fractions of red and blue galaxies
at high redshift (Marchesini & van Dokkum 2007) and
the simplified treatment of dust obscuration is proba-
bly inadequate (Kitzbichler & White 2007), the models
should contain a more representative sample of galaxy
SEDs over the broad redshift range 0 < z . 4 than purely
local surveys. For the calibration set of the template op-
timization routine, we randomly select a subsample of
104 galaxies with KAB < 25 from the lightcone catalog.
The redshift and K magnitude distributions of galaxies
in the calibration sample are shown in Figure 1.

For the input list of Nin models to the BR07
NMF algorithm, we use the library of PÉGASE
models (Fioc & Rocca-Volmerange 1997) described by
Grazian et al. (2006), which those authors use to obtain
high-quality photometric redshifts over 0 < z < 2 in the
GOODS-South field. The library includes Nin ∼ 3000
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Fig. 3.— top panel: Normalized residuals (∆Fj = Tz,j − Fj) of redshift/template fits to the full GOODS-CDFS photometric catalog
(Wuyts et al. 2008), shifted into the rest-frame using the photometric redshifts of each source, estimated using the “NMF” templates
described in §2.2. Only objects with a measured flux in all bands are shown. The dashed line indicates the median of the residual absolute
values in wavelength bins with widths such that each bin contains ∼2000 data points. bottom panel: Binned residuals (absolute value)
shown with the vertical scale expanded. The dashed line is the same as in the top panel. The dot-dashed line is the median photometric
error, σj/Fj , multiplied by a factor of 0.67 to scale the errors from 1-σ (68%) to 50% confidence intervals. We subtract in quadrature the
median photometric error from the median observed residual in each bin to determine the contribution from “template-error” (filled circles).
The solid line is our adopted template error function, which has been smoothed and extended into the NUV to avoid a discontinuity at
the Lyman break. We extend the error function beyond the longest wavelength bin to have σTE = 1.0 at λ = 10 µm to account for the
presence of dust emission in the NIR that is not included in the templates.

models with ages between 1 Myr and 20 Gyr and having
a variety of star formation histories including exponen-
tially decreasing star formation rates characterized by
the exponential decay rate, τ∗, and constant star for-
mation models that are truncated. Roughly half of the
models in the library are constant star formation models
with additional reddening [0.5 ≤ E(B−V ) ≤ 1.1] applied
using the extinction curve of Calzetti et al. (2000), which

are designed to represent young, dusty objects. PÉGASE
models provide a self-consistent treatment of emission
lines, which are not included in the Bruzual & Charlot
(2003) models. Though the synthetic photometry in the
lightcone catalog does not include emission lines, we use
the PÉGASE template set with and without emission
lines and find slightly better results with the output tem-
plates when emission lines are included.

The final Nout = 5 templates computed from the indi-
vidual PÉGASE templates as fit to the lightcone catalog
are shown in Figure 2, along with the BR07 and CK tem-
plate sets for comparison. The two NMF-derived tem-
plate sets span a larger range of optical-NIR colors than
the CK set, and the NMF templates contain more infor-
mation in the NUV than the simple power-law extrapo-
lations of the CK set. The higher spectral resolution of
the pure-model NMF templates is not likely to affect pho-
tometric redshift estimates, but more realistic colors in
the rest-UV should be important as optical filters sample
this portion of the SED at moderate redshift, z & 1. The
primary difference between the BR07 template set and
the set derived here is the presence of the dusty (and old)
template that is the reddest template in the BR07 set.
Though there are models with significant dust absorp-

tion in the PÉGASE library, the NMF algorithm does
not require a dusty template to fit the lightcone photo-
metric catalog. This is likely due to the fact that the
simple dust prescription in the lightcone model is unable
to produce any extremely dusty galaxies. Therefore we
add a dusty starburst model (t = 50 Myr, AV = 2.75) to
the set of 5 NMF-derived templates to compensate for
the lack of dusty galaxies in the SAM calibration sample
(Figure 2). While the parameters chosen for this addi-
tional template are somewhat arbitrary, they are chosen
such that the template fills in regions of the rest-frame
color space not sampled by the 5 NMF-derived templates
(Figure 2). In §3 we compute photometric redshifts for
a variety of publicly available optically- and K-selected
photometric survey fields and we compare the quality of
redshifts estimated using these three template sets.

2.3. The template error function

Multi-wavelength surveys frequently sample rest-frame
wavelengths from the UV to the near-IR for galaxies
at z . 4, and the quality of the calibration of pop-
ulation synthesis models is not constant over that full
wavelength range. This can be caused by a number of
factors, such as (1) uncertainties in the stellar evolution-
ary tracks; (2) transformation of the physical parameters
of the models to observable quantities; (3) variations in
the dust extinction law; and (4) stochastic spectral fea-
tures that are simply not included in the models. For
example, relevant to item (1) above, Maraston (2005)
find that short-lived thermally-pulsating asymptotic gi-
ant branch stars, which had not been previously properly
included in isochrone synthesis models, can contribute
significantly to the emergent NIR flux from stellar pop-
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ulations younger than ∼1.5 Gyr. Considering item (4),
the presence/strength of emission lines depends strongly
on properties of the ISM, which are only loosely coupled
to the evolution of stars within a galaxy. For example, in
the extreme case of Lyman-α, Steidel et al. (2000) find
equivalent widths ranging over 1–2 orders of magnitude
in emission and absorption for a relatively homogeneous
sample of Lyman-break galaxies at z ∼ 3.

No single generalized template set could hope to ac-
count for all of these uncertainties, and it is therefore no
surprise that corrections to a minimal template set are re-
quired to optimize photometric redshifts for a given pho-
tometric catalog (e.g. Ilbert et al. 2006). As discussed
in §2.2, such optimization requires an extensive calibra-
tion set of galaxies with spectroscopically-measured red-
shifts, which is often unavailable or at best incomplete
for deep imaging surveys. Here we derive a “template
error function” that seeks to incorporate uncertainties
such as those mentioned above into the template fitting
algorithm (Eq. 1). Besides the calibration uncertainties
described above, any set of individual templates will have
difficulties reproducing the wide variety of star formation
histories and dust extinction in galaxies. To make mat-
ters worse, such properties not only vary among galaxies
at a given cosmic epoch, but also vary systematically
with time (or redshift). Along with allowing for multi-
ple linear combinations of individual templates, the tem-
plate error function developed here helps to account for
these variations. The exact form of the template error
function depends on the chosen set of templates, but it
is computed in such a way that it generally applicable
especially when no spectroscopic calibration sample is
available.

The template error function is derived in the follow-
ing way. First, photometric redshifts are determined
with a uniform template error function (set at a constant
0.05 mag; see, e.g. Rudnick et al. 2001), for the photo-
metric catalog of the GOODS-CDFS field described by
Wuyts et al. (2008). We use the CDFS because it pro-
vides the deepest survey with extensive multi-wavelength
coverage that includes the NIR IRAC bands.4 Next, we
calculate the residuals from the best-fitting model spec-
tra and de-redshift them into the rest-frame. These resid-
uals are shown in the top panel of Fig. 3 (after several
iterations). The binned median absolute values of these
residuals are shown by the solid symbols in the bottom
panel of Fig. 3, along with a smoothly varying function
that is fit to the solid symbols (dashed line). Finally,
the template error function (solid line) is created by sub-
tracting in quadrature the (scaled) photometric errors
(indicated by the dot-dashed line) from this smoothly
varying function. The procedure is repeated until con-
vergence is reached.

The residuals in Figure 3 are only shown for bands with
signal-to-noise (S/N) > 10. To test whether the derived
error function depends on the S/N of the flux measure-
ments, we also compute the template error for different
limits 3 > S/N > 20. The sizes of the median resid-

4 Since we wish to determine how well the PÉGASE template
set matches observed data, we cannot use the synthetic lightcone
photometry as that would only illustrate differences between SEDs

produced by the PÉGASE and Bruzual & Charlot (2003) popula-
tion synthesis codes.

Fig. 4.— Prior probabilities, p(z|m0), a function of observed R
and K (AB) magnitudes. The shape of the priors is given by the
model redshift distributions of galaxies in the lightcone catalog,
normalized to

R

p(z|m0 dz = 1.

uals and photometric errors decrease as the S/N limit
increases, but we find that the quadratic difference of
the two remains mostly unchanged. The shape of the
template error function roughly follows what one might
expect following the considerations enumerated above:
the template error is lowest in the rest frame optical,
λ =3500 Å– 9000 Å, where stellar isochrones are well-
calibrated; the template error is large in the UV where
dust extinction is strongest and most variable; and the
template error increases again in the NIR where the stel-
lar isochrones are uncertain (e.g. Maraston 2005) and
where thermal dust emission and stochastic PAH line
features begin to appear at λ > 3µm.

2.4. Bayesian Prior

The template-fitting method of estimating photomet-
ric redshifts suffers from the fact that template colors are
frequently degenerate with redshift, such that the red-
shift probability distributions can have multiple peaks
over a broad range of redshifts. For example, relatively
featureless blue SEDs can often be fit equally well at
z = 0 and z ∼ 3 because the templates are unable to dis-
tinguish blue colors redward of the Balmer and Lyman
breaks, respectively. The degeneracies can sometimes be
broken by adding additional photometric bands (in the
previous example, adding IRAC photometry helps) or by
incorporating statistical methods to help choose between
multiple probability peaks at different redshifts.

Beńıtez (2000) was the first to develop a Bayesian ap-
proach to estimating photometric redshifts that includes
the use of a Bayesian prior, which adds additional in-
formation besides the observed photometric colors to
help constrain the redshift estimates. Following Beńıtez
(2000) we adopt an apparent magnitude prior, p(z|m0),
which is the redshift distribution of galaxies with appar-
ent magnitude, m0. This is essentially a “luminosity-
function-times-volume” prior that assigns a low proba-
bility to very low redshifts where the volume sampled is
small and a similarly low probability of finding extremely
bright galaxies at high redshift. In contrast to Beńıtez
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TABLE 1

Field Area (arcmin2) Bands K depth (3σ) Ref.

HDF-N . . . . . . . ∼5 UBV IJHK ∼24 Fernández-Soto, Lanzetta, & Yahil (1999)
HDF-S . . . . . . . . 4.5 UBV IJHK + IRAC 26.2 Labbé et al. (2003)
MS-1054 . . . . . . 29 UBV V606I814JHK + IRAC 25.5 Förster Schreiber et al. (2006)
MUSYC . . . . . . 400 UBV RIzJHK + IRAC 23.5 Quadri et al. (2007), Marchesini et al. (in prep)
GOODS-CDFS 138 [U38BV RI]WFI[BV Iz]ACSJHK + IRAC 24.9 Wuyts et al. (2008) Popesso et al. (2008)

(2000), we do not include spectral (template) type in the
prior because (1) our derived templates do not directly
correspond to individual galaxy spectral types; (2) we
fit linear combinations of all 5 templates simultaneously;
and (3) we do not want the prior to impose any color
restrictions as a function of redshift, the last point being
most important. For example, the prior used by Beńıtez
(2000) based on the HDF-N gives essentially zero prob-
ability to red E/S0 spectral types at z > 2, even though
recent work has shown that such galaxies are fairly com-
mon, at least in NIR-selected samples (e.g. Kriek et al.
2006).

To determine the shape of the prior probability dis-
tribution, p(z|m0), we again turn to the synthetic pho-
tometry of the SAM lightcone catalog described in §2.2
because this problem is subject to many of the same com-
pleteness limitations of observed samples as the template
optimization routines. In principal, one could iteratively
determine redshift distributions from observed data and
then recompute photometric redshifts using the distri-
butions as the prior, but observed samples are generally
small at high redshift and the iterative method is not
guaranteed to converge to the truth. Though the syn-
thetic models do not perfectly reproduce observed data
(e.g. Figure 1), they should be able to reasonably esti-
mate p(z|m0) over 0 < z . 4, since in practice it is only
the shape of p(z|m0) that matters in a given m0 bin and
not the overall normalization of the number of galaxies
in that bin. We adopt a functional form of the prior,

p(z|m0,i) ∝ zγi exp

[

−

(

z

z0,i

)γi
]

, (3)

(Beńıtez 2000) and fit the parameters, γi and z0,i, for
the redshift distributions in each magnitude bin, m0,i.
Because the lightcones contain many galaxies at high
redshift, the functional fits do not extrapolate at high
redshift, but rather they ensure that the shape of the
prior is smooth over the entire redshift range. Figure 4
shows p(z|m0) for two selection bands, R and K, deter-
mined from the full 1 deg2 lightcone catalog of ∼ 106

galaxies.

2.5. Output redshifts and confidence intervals

With the tabulated values of the prior, we can now
compute the posterior redshift probability distribution
for each galaxy, given the galaxy’s observed colors, C,
and apparent magnitude, m0:

p(z|m0, C) ∝ p(z|C)p(z|m0), (4)

(Beńıtez 2000) where p(z|C) = exp
[

−χ2 (z) /2
]

is the
likelihood computed from the template fits (Eqs.1, 2)
over a user-supplied redshift grid. Given the posterior

probabilities, the code produces two redshift estimates,
zp and zmp, where zp is simply the redshift where the
probability is at its maximum and zmp is the value of
the redshift marginalized over the posterior probability
distribution,

zmp =

∫

z p(z|C, m0)dz
∫

p(z|C, m0) dz
. (5)

For a gaussian probability distribution, zp = zmp. In
practice zmp smooths out some small-scale systematic er-
rors apparent in zphot–zspec comparisons and zmp allows
the use of a coarse redshift grid to speed up the execu-
tion of the code without significant loss of precision in
the output redshift estimates.

We compute formal lower and upper confidence limits,
zlo and zup, for a confidence level, α, by integrating the
posterior probability distribution from the edges until the
integrated probability is equal to α/2:

α

2
=

∫ zlo

0

p(z|C, m0) dz, (6)

α

2
=

∫

∞

zup

p(z|C, m0) dz,

where the limits (0,∞) are replaced in practice by
user-specified parameters, (zmin,zmax), and 1-, 2-,
and 3-σ confidence limits are computed with α =
0.317, 0.046, 0.003, respectively.

2.6. Software

The algorithm is implemented in a public software pro-
gram, dubbed “EAZY” (for “Easy and Accurate Red-
shifts from Yale”). The user-interface of EAZY was
modeled on the popular HYPERZ code, but the under-
lying code is written independently. EAZY is controlled
through a parameter file whose defaults should provide
good redshifts for most applications. We provide the op-
timized template set, template error function, and priors
described above as default inputs, but the code accepts
any user-defined version of these files in simple ASCII
formats. The code is fast, taking about four minutes to
run the 6300 galaxies in the Wuyts et al. (2008) FIRE-
WORKS GOODS-CDFS catalog with linear combina-
tions of the six default templates (§2.2) on an Apple Mac-
Book running a 2 Ghz Intel Core 2 Duo processor. For a
redshift test grid, 0 < z < 6; ∆z = 0.01 (1 + z), EAZY
requires 12 s compared to 270 s for HYPERZ (without
fitting reddening) to run the entire CDFS catalog when
fitting only the single best-fit template of the six (but see
Figure 6). The EAZY package, along with installation
instructions, example files and a user’s manual, can be
obtained from http://www.astro.yale.edu/eazy/.
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Fig. 5.— left : Spectroscopic vs. photometric redshifts computed for 5 surveys with deep optical-NIR photometry, shown on a “pseudo-
log” scale. right, top: Residuals, ∆z = zphot − zspec, as a function of zspec. The red datapoints indicate σ(z) scaled by a factor of two in
bins that each contain N = 200 sources and have widths indicated by the horizontal bars. The blue points indicate the median residual in
the same bins, also scaled by a factor of two to magnify the low-level systematic effects. right, bottom: Same as the top panel, but plotting
the “surface density” of points rather than the points themselves to highlight systematic effects.

3. APPLICATION

We have combined a diverse set of public photometric
catalogs to test the quality of the photometric redshifts
computed by EAZY. In this section, we compare photo-
metric redshifts to a large sample of spectroscopic red-
shifts. We stress that we do not use the spectroscopic
sample to calibrate the photometric redshifts explicitly,
because, as discussed earlier, our spectroscopic sample
is not necessarily representative of the full photometric
samples. Rather, we use the spectroscopic sample to
illustrate how certain systematic effects depend on fea-
tures of the code implemented as described in §2.

3.1. Combined test sample

To adequately test the code, we require photometric
catalogs with broad multi-wavelength coverage from the
UV through the NIR to produce unbiased photometric
redshifts over a broad redshift range. Deep NIR pho-
tometry is essential for uncovering the complete popula-
tion of galaxies at z > 1.5 (e.g. van Dokkum et al. 2006),
and is correspondingly important for estimating photo-zs
as the Balmer break shifts into the NIR bands at these
redshifts. Table 1 summarizes the photometric data we
use with EAZY to compute photometric redshifts5. All
of these catalogs provide U -band photometry necessary
to break the Lyman-break degeneracy between z ∼ 0
and z ∼ 3, and the catalogs represent most of the deep-
est public NIR photometry available. The optical pho-
tometry for 4/5 of the photometric catalogs comes from
the Hubble Space Telescope (HST). We use the CDFS-
GOODS catalog of Wuyts et al. (2008) which combines
the deep HST GOODS photometry with ground-based
UBVRI photometry from the ESO Deep Public Survey
(Arnouts et al. 2001). The NIR JHK photometry comes
from a variety of ground-based facilities. Additionally,

5 We provide zphot catalogs for the FIRES, MUSYC, and FIRE-
WORKS surveys at http://www.astro.yale.edu/eazy/ that su-
percede the zphot estimates provided by the catalog references
listed in Table 1

the majority of the sample is observed in the four IRAC
bands on the Spitzer Space Telescope. Sources in the
HDF-N are selected in the I -band (WFPC2-F814W),
while sources in the other four fields are all selected in
K-band images.

Though the photometry in the fields listed in Ta-
ble 1 reaches significantly deeper magnitudes than the
practical spectroscopic limit, these fields have been ob-
served with extensive follow-up programs that provide a
large sample of spectroscopically-measured redshifts. We
have collected a sample of 1989 spectroscopic redshifts
from references listed in Table 1 covering the full range
0 < zspec . 4. We use only the most reliable redshift
quality flags when they are available in the spectroscopic
catalogs. The spectroscopic sample contains 334 galax-
ies at zspec > 1.5 that have a variety of spectral types,
including Lyman break galaxies with blue rest-frame col-
ors (LBGs; Steidel et al. 2003) and Distant Red Galax-
ies with quite red rest-frame colors (DRGs; Franx et al.
2003; Kriek et al. 2006).

3.2. Results with default parameters

Figure 5 shows that zphot estimated by EAZY agrees
remarkably well with zspec over the entire redshift range
covered by the spectroscopic sample. The same code
parameters are used for all fields, and no additional tem-
plate or photometric optimizations are done based on
the zspec–zphot comparison. We use the normalized me-
dian absolute deviation (σnmad) of ∆z = zphot − zspec

to quantitatively assess the quality of the photometric
redshifts, with

σnmad = 1.48 × median

(∣

∣

∣

∣

∆z − median(∆z)

1 + zspec

∣

∣

∣

∣

)

. (7)

With this definition, σnmad is equal to the standard
deviation for a Gaussian distribution. An advantage
of this definition is that it is less sensitive to outliers
than the usual definition of the standard deviation (e.g.
Ilbert et al. 2006). Hereafter we drop the subscript for
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Fig. 6.— Residuals, ∆z = zphot − zspec, for different combinations of input parameters. The scatter, σ, and the number of 5σ outliers
are indicated in each panel with the outliers divided into N > 5σ (superscript) and N < −5σ (subscript). left, top: identical to Figure

5. The “best” parameter set fits all of the PÉGASE templates simultaneously (§2.2) and includes the template error function (§2.3); left,
bottom: Template error not used; center, top: kcorrect templates from Blanton & Roweis (2007); center, bottom: Empirical templates

from Coleman et al. (1980) and Kinney et al. (1996); right, top: Pairs of PÉGASE templates, rather than all simultaneously; right, bottom:

Single PÉGASE templates.

clarity (σ = σnmad). The scatter, σ, is nearly con-
stant as a function of zspec, with σ = 0.034 for the entire
spectroscopic sample. The scatter does increase above
zspec > 1.5 where σ = 0.075. Systematic deviations
from the zphot = zspec line are very small at most red-
shifts, with the exception that zphot underestimates zspec

at z = 1.0−1.4 by ∼5% (median). Figure 5 shows a rela-
tively small number of sources that have estimated zphot

very different from zspec. These “catastrophic outliers”
(defined here to have ∆z/(1 + z) > 5σ) make up 5%
of our spectroscopic sample. We note that we have not
performed any cuts on the spectroscopic sample based
on signal-to-noise or coincidence with X-ray sources that
could indicate the presence of an AGN, both of which
could contribute to a poor estimate of zphot. In §4.2 we
describe how the catastrophic outlier fraction can be de-
creased using observables computed from the zphot fit.

3.3. Effects of changing the default parameters

We have computed zphot for the spectroscopic sam-
ple using different combinations of input parameters to
demonstrate the effects that the features of the code im-
plementation (§2) have on the quality of the computed
zphot. In a separate paper, E. N. Taylor et al. (in prep)
present additional quantitative tests that show not only
how the EAZY zphot estimates depend on changing in-
put parameters such as the template set, but how the
science results based on those redshifts—specifically the
evolution of rest-frame colors and stellar masses of red
galaxies over 0 < z < 2—also vary systematically with
different code inputs. The residuals, ∆z, for the different
zphot sets are shown in Figure 6. The “best” reference

parameter set fits the 6 PÉGASE NMF templates simul-
taneously and includes the template error function. Fig-
ure 6b shows the residuals for fits that do not include the
template error function; the scatter is somewhat higher
than when the template error is used, and systematic ef-
fects appear as a function of zspec. Galaxies at z < 1 have
zphot overestimated by 10%. The number of catastrophic

outliers is similar whether or not the template error func-
tion is used, though when the template error function is
not used the majority of outliers have zphot >> zspec.
This is potentially problematic for science applications
that would be adversely affected by bright, low-z galax-
ies scattering into high-z samples (e.g. luminosity func-
tions). The number of 5σ outliers is nearly constant in all
of the panels of Figure 6, however the number of sources
with ∆z/(1+z) greater than some fixed value, e.g 0.2, is
significantly lower for the best template/parameter set.

Figures 6c,d show residuals for zphot computed us-
ing the BR07 and empirical CK template sets, respec-
tively. The differences between fits using the PÉGASE
and BR07 templates are small, though the systematic
effects are somewhat worse when using the BR07 tem-
plates: galaxies at zspec > 1.5 have zphot systematically
low by ∆z ∼ 0.2. The scatter is significantly higher
when using the empirical templates compared to either
synthetic template set. The zphot estimated with the em-
pirical templates are also systematically underestimated
at 0.5 < zspec < 1.5. This effect has been observed pre-
viously in other photometric redshift studies and it has
often been “cured” by correcting the templates based on
the input photometry (e.g. Feldmann et al. 2006). How-
ever, we demonstrate here that our carefully-determined
synthetic template set (Figure 5) itself greatly reduces
these systematic effects without requiring any additional
corrections based on spectroscopic calibration samples.

Figures 6e and 6f show residuals for zphot for Ntemp =
2 and 1, respectively (Eq. 2), given the 6 templates of the

PÉGASE NMF set. The primary effect of fitting multi-
ple templates simultaneously is a striking reduction in
σ. This technique does not allow for the simple spec-
tral classification provided by single-template fits, how-
ever the increased precision of the photometric redshifts
should allow more physical separations of photometric
samples based on, for example, rest frame colors.

Figure 7 shows how the incorporation of the redshift
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Fig. 7.— Effect of the prior. The sources where the prior moved
the maximum likelihood redshift by

˛

˛zprior − zML

˛

˛ > 0.03(1+zspec)
are indicated with a large point at zphot = zprior and a tail extend-
ing to zphot = zML. The cases where the prior improves zphot are
shown in green, and the cases where the prior incorrectly pushes
zphot away from zspec are shown in red.

prior affects the zphot estimates. While the prior gener-
ally improves zphot, it does not efficiently discriminate
between multiple probability peaks in all cases. For
example, there is a handful of galaxies in the spectro-
scopic sample at zspec ∼ 3 but with zphot ∼ 0.2 resulting
from the degeneracy between fitting the Balmer break
at low redshift and the Lyman break at high redshift.
The prior breaks this degeneracy for the single case indi-
cated, but does not work for the remaining galaxies with
discrepant zphot. The prior does, however, affect more
sources with similar degeneracies from the full photo-
metric sample (without zspec). Figure 8 indicates that
there are “clouds” of sources in zML − zprior space that
follow the behavior indicated by only one or two sources
with measured zspec. For example, there is a cloud of
sources with zML ∼ 0.2 and zprior ∼ 3. The galaxies
in this cloud likely have similar colors that all result in
the same redshift degeneracy of the template fits (see,
e.g. Oyaizu et al. 2007). If the single source with a mea-
sured zspec is representative of this group, than zprior is
likely closer to the true redshift for all of the sources in
this group. The opposite could be true for the group
of sources at zML > 3.5 and zprior < 1, where the two
sources with zspec indicates that zML is likely a better
estimate of the true redshift than zprior. Nearly all of the
“clouds” in Figure 8 have one or two counterparts with
measured zspec, so such a figure could be used to choose
the optimal zphot estimate for all of the sources in the
full photometric sample.

3.4. Comparison to neural network redshifts

If our assumption that the synthetic photometry of
the lightcone catalogs is representative of true galaxy
photometry over 0 < z < 4 (§2.2), then the synthetic
photometry could perhaps be used to train a neural net-
work that could estimate photometric redshifts indepen-
dently of our template-fitting approach. We use the

Fig. 8.— Maximum likelihood zphot vs. zphot after including
the prior (Eq. 4 for the full photometric sample of galaxies from
the surveys listed in Table 1. Sources with measured zspec and
where

˛

˛zprior − zML

˛

˛ > 0.03(1+zspec) are indicated, as in Figure 7.

Here, the tails point from [x, y] =
ˆ

zML, zprior

˜

to [zspec, zspec].
Therefore, horizontally oriented tails indicate cases where the prior
improves zphot. Cases where zML ∼ zprior but both are different
than zspec, which would lie along the one-to-one line on the figure,
are not shown.

ANNz code (Collister & Lahav 2004) to train a commit-
tee of five 11:10:10:1 neural networks directly on 11-band
(UBV RIzJHK + IRAC1, 2) lightcone catalog. The
photometric redshifts estimated for the validation sample
(a random subset of the lightcone catalog) have σ ∼ 0.03,
indicating that the network training works reasonably
well. We test the neural network on the observed pho-
tometry of the MUSYC HDFS-1 field, which contains
114 spectroscopic redshifts over 0 < z < 3 and whose
filter transmission curves are identical to those used to
compute the synthetic lightcone photometry.

The photometric redshifts estimated by (EAZY,
ANNz) have σ = (0.046, 0.100) for the full MUSYC-
HDFS spectroscopic sample and σ = (0.075, 0.105) for 18
galaxies at zspec > 2. Along with the increased scatter,
the ANNz photometric redshifts show systematic errors
that are not seen in the EAZY redshifts. These discrep-
ancies are likely caused by the fact that the neural net-
work technique depends more critically on the assump-
tion that the training catalog has identical properties to
the full data catalog. For example, Collister & Lahav
(2004) point out that ANNz is able to account for the
internal redenning of SDSS galaxies in their training and
validation samples, but if the dust model of the light-
cones is incorrect, the neural networks trained on them
will have systematic problems matching real observa-
tions. These sorts of problems also affect the template-
fitting approach, though our additional dusty template
and the template error function are designed to address
such systematic uncertainties.

4. RELIABILITY OF PHOTOMETRIC REDSHIFTS

4.1. Confidence intervals
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We can assess how well the confidence intervals com-
puted by Eq. 7 reflect the zphot uncertainties by observ-
ing how often the measured zspec falls within the inter-
val. For example, 41% of sources have zspec outside of
the 68% confidence interval, while 32% are expected .
In general, however, zspec lies close to the edge of the
confidence intervals, and expanding the 68% confidence
interval by a factor of only 0.01 × (1 + zspec) decreases
the number of discrepant sources to 29%. We find that
the probability distributions, p(z|C, m0), and therefore
the confidence intervals computed by Eq. 7 for individ-
ual sources, are consistent with the zphot distributions
of Monte-Carlo simulations in which we measure zphot

after perturbing the photometric fluxes within their as-
sociated uncertainties. In general, we conclude that the
confidence intervals provide a reasonable representation
of the uncertainties of the zphot estimates.

4.2. Reliability parameter

There is a small number of sources where zspec lies
well outside even the 99% confidence intervals. These
sources usually have sharply-peaked probability distri-
butions, so no alternate definition of Eq. 7 (e.g.
Fernández-Soto et al. 2002) or Monte-Carlo simulations
could significantly improve the confidence intervals.
Catastrophic outliers can be caused by (a combination
of) a number of factors: (1) intrinsic SEDs that are not
well-reproduced by the template set, (2) degeneracies
in color-z space that result in multiple peaks in p(z)–
especially for very blue galaxies with featureless SEDS–
(3) one or more anomalous photometric measurements,
or (4) simply that the spectroscopic source was incor-
rectly matched to a photometric source or that the red-
shift was misidentified in the spectrum. Quantitative
features of the zphot fit can be used to identify catas-
trophic outliers caused by one or more of the prob-
lems described above. For example, Beńıtez (2000) de-
fines a parameter, p∆z, that represents the fraction of
the total integrated probability that lies within ±∆z of
the zphot estimate, and is designed to identify sources
that have broad and/or multi-modal probability distri-
butions. Mobasher et al. (2007) find that the zphot scat-
ter is an increasing function of a parameter, D95 that
is defined as the ratio of the 95% confidence interval to
(1+zphot). Here we define a parameter, Qz, that is a hy-
brid of the parameters proposed by Beńıtez (2000) and
Mobasher et al. (2007), and also includes the χ2 of the
template fit:

Qz =
χ2

Nfilt − 3

z99
up − z99

lo

p∆z=0.2
. (8)

The inclusion of χ2 should allow us to address the “catas-
trophic” cases (1-3) above. Figure 9 shows the zphot

residuals and σ as a function of Qz. We show Qz–σ for
the spectroscopic sample and also for a simulated sam-
ple following Beńıtez (2000), where we fit zphot for each
source in the CDFS photometric catalog; set the tem-
plate colors of the fit at zphot to be the new photometric
colors; add photometric scatter following the photomet-
ric errors; and finally refit zphot for the new synthetic
photometry. The zphot scatter increases sharply above
Qz = 2 − 3 in both the synthetic and observed spectro-
scopic samples. The 5 − σ outlier fraction at Qz > 2(3)

Fig. 9.— Redshift residuals as a function of the redshift quality
parameter, Qz (Eq. 8). The red line indicates σ(Qz), scaled by a
factor of 10 so that variations are visible on the plot scale.

is 0.3 (0.4), so quality cuts based on Qz can eliminate
a large fraction of the outliers at the expense of a small
number of satisfactory zphot estimates. We have verified
that quality cuts based on Qz are independent of red-
shift, that is, cutting on Qz > 3 does not preferentially
remove only high-z sources.

4.3. The false security of zphot – zspec plots

We have emphasized that EAZY has been designed to
estimate photometric redshifts of galaxies in deep photo-
metric surveys that lack representative calibration sam-
ples with measured spectroscopic redshifts. Such a sit-
uation will be the case for the latest generation of large
NIR surveys that will reach K ∼ 25 (e.g. UKIDSS;
Lawrence et al. 2007) and probe galaxies with L⋆ lu-
minosities at z ∼ 3.5 (e.g. Marchesini et al. 2007). Al-
though EAZY (and other codes) performs very well in
zphot – zspec plots, many systematic effects are “hidden”
in such diagrams. This is implicit in Fig. 8: this Fig-
ure demonstrates that there are large groups of sources
whose photometric redshifts are very sensitive to the de-
tails of the optimization routine, but that this behavior
is only “sampled” by, at-best, one or two sources with
measured zspec. A single outlier, such as the object at
(zspec = 4.5, zphot = 1.25), might not appear notewor-
thy in a plot like Figure 7, but it could represent a large
number of objects.

We explore this effect further by comparing zphot com-
puted for the full CDFS catalog of Wuyts et al. (2008)
and for a perturbed version of the same catalog. For
the perturbed catalog, we add random zeropoint offsets
to each of the photometric bands with a maximum off-
set of 5%, and we remove the J-band from the zphot

fit. The zphot for the normal and perturbed catalogs
are shown in Figure 10. The small zeropoint offsets
cause systematic effects visible as kinks in Figure 10 be-
tween 0 < zphot < 1. Without the J-band, the tem-
plate fits cannot efficiently isolate the Balmer break at
1.5 < z < 2.5, and the degeneracy of the zphot fits at
these redshifts are visible in Figure 10. Now we consider
how these systematic effects are traced by the subsample
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Fig. 10.— Comparison of zphot computed before and after
adding random zeropoint errors of up to ∼5% to the CDFS photo-
metric catalog of Wuyts et al. (2008). The full photometric sam-
ple is shown in the greyscale contours, while the red points indi-
cate galaxies with spectroscopic redshifts measured by the VVDS
(Le Fèvre et al. 2005). The contour levels are the same as those in
Figure 8.

of galaxies from a flux-limited spectroscopic survey, in
this case the I < 24 spectroscopic survey of the VVDS
(Le Fèvre et al. 2005). At redshifts where the spectro-
scopic survey is complete, here z . 1.5, the spectroscopic
sample effectively traces the systematic effects of the full
photometric sample and the sources with spectroscopic
redshifts can be used to calibrate the photometric red-
shift algorithms. There are a few galaxies at z > 2 in
the spectroscopic sample, but their zphot are nearly iden-
tical from both the normal and perturbed photometry.
One would not be able to distinguish between the two
catalogs—or similarly between two separate photomet-
ric redshift algorithms (Hildebrandt et al. 2008)—if each
produces the same zphot estimates, even if the zphot es-
timates suffer from serious systematic uncertainties for
sources beyond the flux limits of the spectroscopic com-
parison sample.

Similar effects are demonstrated in Fig. 11. Here, we
did not perturb the zeropoints, but mimicked the filter
set of the POWIR survey (Conselice et al. 2007), which is
one of the largest K-selected surveys to date. Again, the
spectroscopic sample (in this case, redshifts down to the
DEEP2 limit R < 24.1) would suggest reasonably robust
redshifts for either the full CDFS (σ = 0.037) or partial
POWIR (σ = 0.048) filter sets at 1 < z < 2. Consider-
ing the entire CDFS photometric sample however, it is
apparent that there are significant discrepancies between
the two filter combinations at z > 1.25. These degenera-
cies have important implications for the interpretation of
high-z galaxy samples, for example surface densities in
two bins, 1.5 < z < 2 and 2 < z < 2.5, differ by more
than a factor of 2 depending on the filters used to es-
timate zphot. These discrepancies would likely be more
pronounced in surveys with limited filter coverage that
are also significantly shallower than the CDFS photom-
etry.

Fig. 11.— Comparison of zphot computed for the full CDFS
filter set and for a subset of the filters, BRIJK (the filter set used
in the POWIR survey; Conselice et al. 2007). CDFS sources with
measured zspec and R < 24.1 corresponding to the limit of the
DEEP2 spectroscopic limit are shown in the large red points.

5. SUMMARY

This paper presents a new photometric redshift code,
dubbed “EAZY”. The philosophy of the code is differ-
ent from other recent photometric redshift codes, in that
it does not aim to minimize the scatter in zphot – zspec

comparisons. This type of minimization works well if
the spectroscopic sample is a random subset of the pho-
tometric sample, but may lead to erroneous results if the
spectroscopic sample is biased. In K- or IRAC-selected
samples the vast majority of objects is very faint in the
observer’s optical (see, e.g. van Dokkum et al. 2006) and
the subset of galaxies with a spectroscopic redshift is
highly a-typical. We therefore develop a new template
set (§2.2) based on synthetic photometry of galaxies in a
semi-analytic model that is essentially complete at red-
shifts significantly beyond the reach of current spectro-
scopic surveys. Furthermore, we introduce a “template
error function” (§2.3) that accounts for both random
and systematic differences between observed photome-
try and the templates and minimizes systematic errors in
zphot without the need to optimize either the templates
or the photometry based on a spectroscopic calibration
sample. The template set and template error function
provided here are intended to be generally applicable to
NIR-selected samples. With these default parameters
and without further optimization, we find that the scat-
ter in zphot–zspec diagrams (σ = 0.034) is at least as low
as achieved by other methods and systematic errors are
minimal over the full range 0 < z < 4 (§3).

The reliability of the uncertainties in the redshifts is
almost as important as the reliability of the redshifts
themselves. The uncertainties that our code provides
behave well for galaxies with a spectroscopic redshift (in
the sense that the confidence intervals correctly describe
the deviations from the true redshifts), but we cannot
test the behavior in the same way for the majority of
objects without a spectroscopic redshift. Assessing the
reliability of photometric redshifts for a sample in which
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the spectroscopic redshifts are not a representative sam-
ple of the full photometric sample can be misleading (§4).
This is especially true when only limited filter coverage is
available and large systematic effects can be present that
are not clearly traced by the spectroscopic sample. In
practice, we expect that the “Qz” parameter (§4.2) gives
a reasonable indication of the robustness of a redshift.

Progress in the study and interpretation of faint galaxy
samples is currently limited by the uncertainties in pho-
tometric redshift estimates. What is sorely needed is a
complete set of faint, K-selected galaxies with reliable
redshifts, so that photometric redshifts can be better
calibrated. At relatively bright K-magnitudes progress
can be expected from near-IR spectroscopy, particularly
with multi-object near-IR spectrographs. Initial results
of such programs already point to problems with some
photometric redshift estimates (Kriek et al. 2008), al-
though we note that the Kriek et al. sample is well-fit by

EAZY. Deeper samples may be obtained through differ-
ent methods. A program is underway with NEWFIRM
on the Kitt Peak 4m telescope to obtain medium band
photometry for a complete sample of ∼ 105 galaxies with
K ≤ 21.5, and this should provide much-needed tests of
the broad-band results reported in the literature.

The authors are grateful to Gabriella de Lucia and
Jeremy Blaizot for computing a large set of model galaxy
magnitudes for the filters used in this paper and con-
structing a set of light-cones specifically designed for our
study, which are a critical component of this paper. We
also thank Stijn Wuyts, Ned Taylor, Rik Williams, and
Ryan Quadri for extensive tests of early versions of the
code, and Gregory Rudnick and Marijn Franx for valu-
able suggestions and comments.
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A., Tresse, L., Le Brun, V., Bottini, D., Garilli, B., Maccagni,
D., Picat, J. P., Scaramella, R., Scodeggio, M., Vettolani, G.,
Zanichelli, A., Adami, C., Bardelli, S., Cappi, A., Charlot, S.,
Ciliegi, P., Contini, T., Cucciati, O., Foucaud, S., Franzetti, P.,
Gavignaud, I., Guzzo, L., Marano, B., Marinoni, C., Mazure,
A., Meneux, B., Merighi, R., Paltani, S., Pollo, A., Pozzetti, L.,
Radovich, M., Zucca, E., Bondi, M., Bongiorno, A., Busarello,
G., de La Torre, S., Gregorini, L., Lamareille, F., Mathez, G.,
Merluzzi, P., Ripepi, V., Rizzo, D., & Vergani, D. 2006, A&A,
457, 841

Kinney, A. L., Calzetti, D., Bohlin, R. C., McQuade, K., Storchi-
Bergmann, T., & Schmitt, H. R. 1996, ApJ, 467, 38

Kitzbichler, M. G., & White, S. D. M. 2007, MNRAS, 376, 2
Kriek, M., van Dokkum, P. G., Franx, M., Förster Schreiber,

N. M., Gawiser, E., Illingworth, G. D., Labbé, I., Marchesini,
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2008, ApJ, 677, 219
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